A Note on Explicit Evaluations of Extended Euler Sums

نویسندگان

  • Huizeng Qin
  • Youmin Lu
چکیده

We study the extended Euler sums and the alternating extended Euler sums and establish their explicit expressions in terms of Riemann zeta functions and Hurwitz zeta functions. Comparing with the existing results, ours are simpler and thus yield significantly better accuracy when Matlab is used for numerical calculation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternate Sylvester sums on the Frobenius set

The alternate Sylvester sums are Tm(a, b) = ∑ n∈NR(−1)n, where a and b are coprime, positive integers, and NR is the Frobenius set associated with a and b. In this note, we study the generating functions, recurrences and explicit expressions of the alternate Sylvester sums. It can be found that the results are closely related to the Bernoulli polynomials, the Euler polynomials, and the (alterna...

متن کامل

SIGNED q-ANALOGS OF TORNHEIM’S DOUBLE SERIES

We introduce signed q-analogs of Tornheim’s double series and evaluate them in terms of double q-Euler sums. As a consequence, we provide explicit evaluations of signed and unsigned Tornheim double series and correct some mistakes in the literature.

متن کامل

Explicit evaluation of Euler sums

In response to a letter from Goldbach, Euler considered sums of the form where s and t are positive integers. As Euler discovered by a process of extrapolation (from s + t 13), h (s; t) can be evaluated in terms of Riemann-functions when s + t is odd. We provide a rigorous proof of Euler's discovery and then give analogous evaluations with proofs for corresponding alternating sums. Relatedly we...

متن کامل

A Note on Extended Binomial Coefficients

We study the distribution of the extended binomial coefficients by deriving a complete asymptotic expansion with uniform error terms. We obtain the expansion from a local central limit theorem and we state all coefficients explicitly as sums of Hermite polynomials and Bernoulli numbers.

متن کامل

Explicit Polynomial for Sums of Powers of Odd Integers

In this note we derive the explicit, non-recursive form of the coefficients of the polynomial associated with the sums of powers of the first n odd integers. As a by-product, we deduce a couple of new identities involving the Bernoulli numbers. Mathematics Subject Classification: 11B57, 11C08, 11B68

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013